Numerical Schemes for Kinetic Equations in the Anomalous Diffusion Limit. Part I: The Case of Heavy-Tailed Equilibrium

نویسندگان

  • Nicolas Crouseilles
  • Hélène Hivert
  • Mohammed Lemou
چکیده

Abstract. In this work, we propose some numerical schemes for linear kinetic equations in the anomalous diffusion limit. When the equilibrium distribution function is a Maxwellian distribution, it is well known that for an appropriate time scale, the small mean free path limit gives rise to a diffusion type equation. However, when a heavy-tailed distribution is considered, another time scale is required and the small mean free path limit leads to a fractional anomalous diffusion equation. Our aim is to develop numerical schemes for the original kinetic model which works for the different regimes, without being restricted by stability conditions of standard explicit time integrators. Starting from some numerical schemes for the diffusion asymptotics, their extension to the anomalous diffusion limit is then studied. In this case, it is crucial to capture the effect of the large velocities of the heavytailed equilibrium, so that some important transformations of the schemes derived for the diffusion asymptotics are needed. As a result, we obtain numerical schemes which enjoy the Asymptotic Preserving property in the anomalous diffusion limit, that is: they do not suffer from the restriction on the time step and they degenerate towards the fractional diffusion limit when the mean free path goes to zero. We also numerically investigate the uniform accuracy and construct a class of numerical schemes satisfying this property. Finally, the efficiency of the different numerical schemes is shown through numerical experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinetic Derivation of Fractional Stokes and Stokes-fourier Systems

In recent works it has been demonstrated that using an appropriate rescaling, linear Boltzmann-type equations give rise to a scalar fractional diffusion equation in the limit of a small mean free path. The equilibrium distributions are typically heavy-tailed distributions, but also classical Gaussian equilibrium distributions allow for this phenomena if combined with a degenerate collision freq...

متن کامل

Numerical Schemes for Kinetic Equations in the Anomalous Diffusion Limit. Part II: Degenerate Collision Frequency

Abstract. In this work, which is the continuation of [9], we propose numerical schemes for linear kinetic equation which are able to deal with the fractional diffusion limit. When the collision frequency degenerates for small velocities it is known that for an appropriate time scale, the small mean free path limit leads to an anomalous diffusion equation. From a numerical point of view, this de...

متن کامل

Fractional diffusion limit for collisional kinetic equations

This paper is devoted to diffusion limits of linear Boltzmann equations. When the equilibrium distribution function is a Maxwellian distribution, it is well known that for an appropriate time scale, the small mean free path limit gives rise to a diffusion equation. In this paper, we consider situations in which the equilibrium distribution function is a heavy-tailed distribution with infinite v...

متن کامل

Positivity-preserving nonstandard finite difference Schemes for simulation of advection-diffusion reaction equations

Systems in which reaction terms are coupled to diffusion and advection transports arise in a wide range of chemical engineering applications, physics, biology and environmental. In these cases, the components of the unknown can denote concentrations or population sizes which represent quantities and they need to remain positive. Classical finite difference schemes may produce numerical drawback...

متن کامل

A New Asymptotic Preserving Scheme Based on Micro-Macro Formulation for Linear Kinetic Equations in the Diffusion Limit

We propose a new numerical scheme for linear transport equations. It is based on a decomposition of the distribution function into equilibrium and non-equilibrium parts. We also use a projection technique that allows to reformulate the kinetic equation into a coupled system of an evolution equation for the macroscopic density and a kinetic equation for the non-equilibrium part. By using a suita...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2016